QUES 04:-

An electron is moving along +x direction with a velocity of 6×10^6 ms⁻¹. It enters a region of uniform electric field of 300 V/cm pointing along +y direction. The magnitude and direction of the magnetic field set up in this region such that the electron keeps moving along the x direction will be:

[Main Sep. 06, 2020 (1)]

- (a) 3×10^{-4} T, along + z direction
- (b) 5×10^{-3} T, along z direction
- (c) 5×10^{-3} T, along + z direction
- (d) 3×10^{-4} T, along -z direction

4. (c)
$$\vec{E} = 300\hat{j} \text{ V/cm} = 3 \times 10^4 \text{ V/m}$$

$$\vec{V} = 6 \times 10^6 \hat{i}$$

$$E \uparrow E = 300 \hat{j}$$

$$V/cm = 3 \times 10^4 \text{ V/m}$$

$$V = 6 \times 10^6 \hat{i}$$

 \vec{B} must be in +z axis.

$$q\vec{E}+q\vec{V}\times\vec{B}=0$$

$$E = VB$$

$$\therefore B = \frac{E}{V} = \frac{3 \times 10^4}{6 \times 10^6} = 5 \times 10^{-3} T$$

Hence, magnetic field $B = 5 \times 10^{-3}$ T along +z direction.